Showing 5 results for Safety Performance
A. Khaleghinejad , M. Ziaaldini ,
Volume 5, Issue 4 (12-2015)
Abstract
Introduction: The present study aimed to investigate the relationship between safety climate and safety performance with respect to the mediating effect of safety knowledge and safety motivation.
Material and method: The study population was a sample of 354 subjects chosen by Cochran formula among all 4252 employee in Sarcheshmeh copper complex in Rafsanjan, 2015. The participants were selected according to stratified random sampling. Data collection was done by four questionnaires (safety climate, safety knowledge, safety motivation, and safety performance).The Cronbach's alpha and composite reliability (CR) were used to evaluate the reliability of the study tools and the coefficient of all variables were acceptable with values of higher than 0.8. Moreover, validity of the questionnaires was confirmed by convergent validity and divergent validity, R-square, effect size (f2), and Q2 criterion. The Average Variance Extracted (AVE) was greater than 0.4 which is relatively acceptable. The obtained data were analyzed using SmartPLS software.
Result: Kolmogorov-Smirnov test was used to investigate the normality status of variables distribution. Furthermore, Structural Equations Method (SEM) was adopted to test the research hypotheses.The results confirmed all the research hypothesis and showed safety climate direct effect on safety performance. Moreover, safety motivation and safety knowledge have mediating role in the relationship between safety climate and safety performance. Safety motivation can also mediate the relationship between safety knowledge and safety performance.
Conclosion: Overall, it is recommended to improve safety climate, considering its influencing components. Employees' safety knowledge and safety motivation should also be promoted. Additionally, it is recommended to determine other personal and organizational parameters and include them into the model. By determining the mediating variables, their role in the safety performance can be investigated.
Mahmoud Modiri, Mohammad Dashti Shiramin, Hamed Karimi Shirazi,
Volume 9, Issue 1 (4-2019)
Abstract
Introduction: Todays, the improvement and optimization of the safety performance are essential and important for control and prevention of accidents in the industry. The purpose of this research was to assist a hybrid cycle power plant for identification and prioritization of the influencing factors in enhancing safety in order to reduce risks and to improve system performance.
Material and Methods: In this descriptive-analytical study, influencing factors were classified within three main categories of human, equipment, and managment, and 14 sub-factors was screened and selected by experts using Fuzzy Delphi method. Then, fuzzy DEMATEL method was adopted to determine the relationships, the intensity of affecting and being affected factors, and the analytical network process method for weighting and prioritization the factors.
Results: The findings of the fuzzy DEMATEL method showed that “Managerial”, “equipment” and “human” factors are respectively influencing factors on the improvement of safety performance. “Managerial factors” is the most influencing and “Human factors” is the most influenced one. Based on the results of fuzzy analysis network process method, “human factors” is the first priority among the main factors, and “employee motivation”, “system of control and prevention”, “work team spirit”, “individual skills” and “Individual protection equipment” sub-factors are respectively the first to fifth priorities were according to their weight.
Conclusion: “Human factors” re the most influenced factor and the main problem of the organization, which can be improved by the most influencing “managerial” factor. The success or failure of the safety performance in the power plant depends on better management of the “human factors” and managers need to motivate employees to improve safety performance.
Mohsen Mahdinia, Mostafa Mirzaei Aliabadi, Ahmad Soltanzadeh, Ali Reza Soltanian, Iraj Mohammadfam,
Volume 11, Issue 2 (6-2021)
Abstract
Introduction: Safety situation awareness is an important element affecting operator's reliability and safety performance, which is influenced by various variables. Identification of these variables and their relationship will play a major role in optimizing control measures. The present study was conducted for this purpose.
Material and Methods: This study was based on the situation awareness, expert’s opinions and use of a Fuzzy multi-criteria decision-making method. Triangular fuzzy numbers was used to quantify the experts' judgments and to reduce the errors that result from theirs’ subjective evaluation on the relationships between the variables.
Results: The results showed that the studied organizational variables together with "safety/g knowledge" and "experience in job/specific task” are the most important predictive variables of situation awareness. Among the organizational variables, "Organizational Safety Attitudes", "Safe System Design" and "Education" are the most important determinants of safety situation awareness.
Conclusion: Fuzzy logic was used to aggregate expert opinions to determine the most important variables affecting situation awareness and their cause-effect relationships. Organizational variables are the main determinants of situation awareness. To improve situation awareness, the best results are obtained by modifying effective root variables, i.e., organizational variables and some individual variables.
Rostam Esmaeili, Ahmad Ali Babaei, Ghazaleh Monazami Tehrani,
Volume 11, Issue 2 (6-2021)
Abstract
Introduction: Each country needs to preserve its human capital through preventing accidents for its development. Therefore, this study is carried out to study the relationship between safety investments and safety performance indices considering the interactive effect of the project hazard level in construction industry.
Material and Methods: This study was conducted using multiple case studies in 5 major construction worksites, in Tehran, in 2019. Data was collected using questionnaire, checklists and interview as well as evaluating the safety documents. The data analysis in this study was carried out using SPSS 18.
Results: There was a strong inverse correlation between safety investments (total safety investment, basic safety investment, and voluntary safety investment) and accident frequency rate (AFR) (r=-0.936, P-value<0.05), and there was a direct strong correlation between safety investment and safety performance (P-value<0.05, r=0.939). Also, the effect of various safety investments on safety performance indices under various project conditions (project hazard levels) was not the same; when the project hazard level was high, the effect of safety investments on safety performance was higher.
Conclusion: Increasing safety investment improves safety performance through decreasing the accidents. Also, investment in both safety components (basic safety investment and voluntary safety investment) might improve safety performance. The results of the current study can be used as a basis by the contractors and construction companies to invest in safety and to determine proper budget for managing safety of construction projects.
Leila Omidi, Hossein Karimi, Saeid Mousavi, Gholamreza Moradi,
Volume 12, Issue 3 (9-2022)
Abstract
Introduction: Safety climate potentially affects safety performance in high-hazard industries. Resilience is a developing concept and is defined as the ability that can affect the continuous improvement of safety performance. The present study assesses the influence of organizational resilience on workers’ safety performance in a steel-manufacturing industry. In this regard, the safety climate mediates the effect of organizational resilience on safety performance.
Material and Methods: A cross-sectional study was accomplished in the steel manufacturing industry in 2021. The survey included three parts: (1) organizational resilience, (2) safety performance, and (3) safety climate. Besides, the organizational resilience was measured by a scale with six dimensions and 19 items. Also, safety performance was assessed by six items regarding two performance dimensions (i.e., safety compliance and safety participation). In addition, safety climate was measured by 19 items, comprising four dimensions (i.e., safety communication, supervisor safety perception, coworker safety perception, and work pressure).
Results: The structural equation modeling results showed that the organizational resilience and safety climate had significant impacts on safety climate (β = 0.23, P ≤ 0.05) and safety performance (β = 0.43, P ≤ 0.05), respectively. Also, the indirect results indicated that safety climate mediated the relationship between organizational resilience and workers’ safety performance.
Conclusion: The increment of organizational resilience and safety climate improves workers’ safety performance. Besides, organizational resilience and related dimensions (e.g., reporting culture, learning, and awareness) improve the safety performance dimensions (i.e., safety compliance and safety participation).