H. Aghaei, H. Kakooei, S.j. Shahtaheri, F. Omidi, S. Arefian, K. Azam,
Volume 3, Issue 4 (2-2014)
Abstract
Introduction: PAHs are organic compounds with benzenic rings that releas from hot asphalt as incomplete combusting. These compounds are one of the major concern in scientific societies, workplace and environment due to their stability, bioaccumulation, carcinogenic and mutagenic effects. Since asphalt workers are exposed to PAHs frequently in their job, in this study it was attempted to evaluate respiratory exposure of asphalt workers to PAHs in their breathing zone.
.
Material and Method: In this study air samples of the asphalt workers were collected in accordance with the NIOSH 5506 method using PTFE filter and XAD-2 adsorbent. The ultrasonic bath and acetonithrile are used in order to extract the analytes from the filter and adsorbent. Also, the samples were analyzed by HPLC-UV.
.
Result: In all samples, Finisher assistance and oilman with 1754.48 ng/m3 , 24.65 ng/m3 had maximum and minimum exposed to ∑PAH, respectively. Among the PAHs compounds, which asphalt workers exposed to, Naphtalene had the highest concentration. Among different asphalt workers tasks, screedman expoused to PAHs, had a significant difference.
.
Conclusion: Evaluation of Polycyclic aromatic hydrocarbons concentrations in the breathing zone of asphalt workers indicated that exposure to these compounds were below the occupational exposure limits recommended by NIOSH, OSAH, ACGIH and Iranian OEL. Due to the highly carcinogenic potential of some of these compounds and absence of occupational exposure limits for these compounds, likes Chrysene and Benzo (a) Anthracene, it is strictly recommended to employ engineering controls and using suitable PPEs. This study also indicated that the exposure to PAHs in the most asphalt workers tasks had significant differences, and it can be due to proximity of the workers to the source of hot asphalt and also exposure to the exhaust gases that releasesd from the construction machinery.
Hossein Ali Rangkooy, Behzad Fouladi Dehaghi, Maedeh Kamalvandi, Hojatollah Kakaei,
Volume 14, Issue 3 (10-2024)
Abstract
Introduction: Exposure to various chemicals can occur in the workplace. Polycyclic aromatic hydrocarbons (PAHs) are among these compounds. The aim of this study was to investigate the relationship between exposure to PAHs and urinary metabolites among built-up roofing installers.
Material and Methods: The current case-control study, conducted in 2021 in Ilam City, involved 35 built-up roofing workers as the case group and 15 non-exposed workers as the control group. In this study, in addition to the workers’ respiratory area, samples were taken from the urine to determine the amount of PAHs metabolites. HPLC was used to analyze the samples. The collected data were analyzed using SPSS software version 22.
Results: The mean concentrations of PAHs including naphthalene, phenanthrene, fluorne, pyrene, benzo(a)pyrene, benzo (ghi)perylene and indeno 1,2,3 cd pyrene were 440.26±80.07, 70.49±24.36, 15.18±5.98, 31.21±10.36, 2.15±1.41, 2.25±0.07 and 1.18±0.06 ng/m3, respectively, in respiratory area of the workers. Also, the average level of compounds 1- naphthol, 2- naphthol, 2-hydroxyfluorene, 3-hydroxyfluorne, 1-hydroxyfenanterol, 2+3-hydroxyfenanterol and 1- hydroxypyrene, present in the urine of the population, was obtained equal to 2±1.02, 6.03±2.5, 0.18±0.15, 0.14±0.1, 0.19±0.08, 0.04±0.02 and 0.34±0.26 μg/g creatinine, respectively. Statistical test showed that the values of these compounds were significantly different in the two groups (p <0.05).
Conclusion: Estimating the concentration of aromatic hydrocarbons in the respiratory area of built-up roofing workers showed the noticeable exposure to these compounds, although lower than the allowable limits. However, due to the high carcinogenic nature of these compounds, it is recommended to use appropriate personal protective equipment such as respirators and appropriate work outfits in addition to the technical strategies to combat the exposure.