Search published articles


Showing 69 results for Golbabaei

Zahra Alaei, Roohollah Ghasemi, Mohammad Reza Pourmand, Ali Karimi, Ensieh Masoorian, Farideh Golbabaei,
Volume 12, Issue 2 (6-2022)
Abstract

Introduction: Volatile organic compounds are the most common pollutants in the air, and among them, toluene is the most common form, which is toxic resulting in liver and kidneys damages. Regarding the fact that this compound is widely used in various chemical industries, implementing an efficient method for controlling its concentration is of great importance. The comparative survey of the capability of virgin activated carbon with the one immobilized by pseudomonas putida PTCC, and also the performance of the biofiltration system involving pseudomonas putida bacteria immobilized on activated carbon for the adsorption and degradation of toluene from the air as well as regenerating the activated carbon were aimed in the present study.
Material and Methods: The microbial growth process was initiated by incubation of pre-culture in a rotary shaker, at 150rpm overnight. After 4 days, the strain pseudomonas putida, PTCC No: 1694 was immobilized on a certain amount of activated carbon. Subsequently, an airstream containing toluene was introduced into the biofilter, and the inlet and outlet concentrations of toluene were measured.
Results: The obtained results illustrated that the increase in the volume of the media and decrease in the gas flow rate significantly enhances efficiency. The great performance of the biofilter was confirmed by the high efficiency of the immobilized activated carbon which exhibited 89% yield during 14 hours. On the second cycle, the biofiltration system was able to adsorb toluene at an efficiency of 81%, while the virgin activated carbon exhibited far less efficiency with the value of 28%.
Conclusion: The provided results demonstrated the feasibility and reusability of the biofilter system for toluene removal. The proposed technique also extends the activated carbon’s capacity, which could be a potential solution to re-use the activated carbon in industrial applications.

Hamzeh Mohammadi, Somayeh Farhang Dehghan, Soheila Khodakarim Ardakani, Farideh Golbabaei,
Volume 12, Issue 3 (9-2022)
Abstract

Introduction: Studies show that in many cases, environmental hazardous agents such as heat, noise, as well as chemical pollutants cause adverse health effects through the mechanism of oxidative stress. This study has examined the effect of exposure to noise and whole-body vibration (WBV) on some parameters of oxidative stress (enzyme superoxide dismutase (SOD), total antioxidant capacity (TAC), and malondialdehyde (MDA)) of workers in a foundry industry.
Material and Methods: The workers were selected based on the calculations related to the sample size and taking into account the inclusion criteria as well as completing the informed consent form. The level of exposure to noise and WBV was measured according to ISO 9612 and ISO 2631, respectively. For each worker, the time-weighted average was calculated. The level of exposure of workers to the studied stressors was divided into three categories: low, medium, and high. The blood samples were taken from all participants between 7-9 am. Then, via ELISA method according to the protocol of the kit manufacturer, the samples were prepared and analyzed. Univariate analysis of variance was performed to determine the “effect size” of each physical stressors on the studied parameters.
Results: The mean levels of MDA, SOD, and TAC among participants were 22.48 (11.19) nmol / ml, 61.28 (10.97) U / ml, and 1.64 (0.90) mM, respectively. Among the exposure variables, noise had the largest effect on MDA level (B = 0.090), which was not statistically significant (P = 0.865). WBV had the largest effect on SOD level (B = -1.469) which was statistically significant (P = 0.016). None of the studied variables had a significant effect on the TAC level; however, among the exposure variables, the greatest effect was related to WBV (B = -0.077; P = 0.133).
Conclusion: The effect of noise on oxidative stress parameters was not statistically significant. The effect of whole-body vibration on oxidative stress parameters except SOD was not statistically significant. Noise and WBV had increasing effect on MDA and decreasing one on SOD and TAC levels.
Ali Mohammad Mossadeghrad, Alireza Sadraei, Mohammad Reza Monazzam Ismailpour, Seyed Jamaleddin Shahtaheri, Seyed Abolfazl Zakerian, Adel Mazloumi, Monireh Khadem, Mahya Abbasi, Ali Karimi, Farideh Golbabaei,
Volume 12, Issue 4 (12-2022)
Abstract

Introduction: Universities play a key role in creating a knowledge-based society and its sustainable development. Strategic planning by strategically analyses internal and external environments of the organization, forecast its future, identifying its strategic direction, and strengthening organizational structures, processes, and outcomes, creates and sustains competitive advantages. This study aimed to formulate a strategic plan for the Occupational Health Engineering (OHE) department of School of Public Health (SPH) at Tehran University of Medical Sciences (TUMS).
Material and Methods: In this participatory action research, a strategic planning committee was formed. The strategic planning committee used the strength, weakness, opportunity and threat (SWOT) matrix to evaluate the internal and external environments of the OHE department. Then, the mission, vision, values, goals and objectives of the OHE department were defined. Finally, the operational plan including actions to achieve the goals and objectives were formulated.
Results: Experienced professors and staff, specialized laboratories, professional journals, and high ranked postgraduate students were the most important strengths; and theoretical and non-practical courses, lack of educational protocols, poor communication with industries, lack of resources, and low motivation of employees were some of the weaknesses of the OHE department.  The support of senior managers of TUMS, industry liaison council at school and university, facilities of the university faculties, comprehensive research laboratories of the university, capacities of the private sector and increasing the demand for research in the industry were the opportunities. High inflation, political sanctions, the absence of consulting engineering companies and the uncertainty of research priorities of industries were important threats to the OHE department. Therefore, the OHE department is in a conservative strategic position. The strategic direction of the department, including the mission, vision, values and goals, until 2025 was determined. Improving the structures, working processes and performance of the occupational health department were determined as objectives and 81 actions were formulated to achieve these objectives.
Conclusion: The educational departments, schools and universities must have a strategic plan for progress. The strategic plan of the occupational health department of TUMS was formulated in line with the four-year plan of the university and coordinated with the operational plans of the educational, health and research deputies of TUMS and school of public Health. Proper implementation of this comprehensive and evidence-based strategic plan will improve the performance of the occupational health department.
Peymaneh Habibi, Seyed Nasser Ostad, Ahad Heydari, Mohammad Reza Monazzam, Abbas Rahimi Foroushani, Mahmoud Ghazi-Khansari, Farideh Golbabaei,
Volume 12, Issue 4 (12-2022)
Abstract

Introduction: Climate change and hot processes in the workplaces has led to an increase in the effects of heat stress on employed people, which has become a major concern, especially in tropical and subtropical countries. Early detection of biomarkers in induction of heat stress-related DNA damage can be used in the identification and evaluation of health and safety, including occupational health professionals, as well as to prevent serious diseases caused by heat stress in various occupations with the nature of hot processes or to help different warm seasons of the year. Therefore, this review study was conducted to identify diagnostic biomarkers heat stress induced- DNA damage in occupational exposure.
Material and Methods: Databases such as PubMed, Scopus, Google Scholar, and Web of Science were systematically searched to meet the study’s goals. Moreover, references to relevant publications were examined. Finally, suitable articles were selected and analyzed using the inclusion (studies on different occupations, different biomarkers in hot work environments, all articles published without time limit until the end of April 2022 , and English and Persian language)  and exclusion criteria.
Results: The results of search in databases showed that 9234 articles were found in the initial search. After removing duplicate and unrelated articles, 2209 eligible articles were selected. Based on abstract full-text screening, 7166 studies were excluded, and based on abstract full-text screening, 21 studies were not accessible. Finally, seven articles were selected to be reviewed. The evidence showed that diagnostic biomarkers included the measurement of 8-hydroxy-2-deoxyguanosine (8-OHdG), micronuclei semen quality, heat shock proteins (HSP70), and leukocytes were extracted to heat stress induced- DNA damage in occupational exposure.
Conclusion: Based on a review of studies,  biomarkers identified are suitable for heat stress induced- DNA damage as a result of occupational exposure to extremely high heat climate conditions. Understanding and identifying appropriate biomarkers in inducing DNA damage can help health and safety professionals determine the amount and magnitude of heat stress responses in occupational exposure to different temperatures and take appropriate measures and interventions to control and reduce the hazard effects of thermal stress. This study can also be considered as a preliminary study for research in the future.
Meghdad Kazemi, Saba Kalantari, Alireza Abbasi, Abbas Rahimi Foroushani, Hossein Mowlavi, Amir Hossein Montazemi, Farideh Golbabaei,
Volume 13, Issue 1 (3-2023)
Abstract

Introduction: In recent years, the manufacture of air purification media, especially nanofiber filters using polymeric materials and the electrospinning method, has received much attention in air pollution control. The production of high-performance media and low-pressure drops is an important issue in air filtration. This study aimed to investigate the feasibility of fabricating electrospinning polyethylene terephthalate (PET) media to abduct submicron and micron particles from the air stream.
Material and Methods: To determine the optimal device conditions in the manufacture of PET media, different weight percentages of a PET polymer solution in a mixture of trifluoroacetic acid and dichloromethane solvents (70:30) were first prepared in a pilot study, and various parameters of the electrospinning device were examined and analyzed along with performing the electrospinning process. The surface and morphological characteristics of the media were evaluated using SEM. The pressure drop and efficiency of particle trapping were assessed using a mask and media pressure by a pressure drop test device.
Results: The optimal electrospinning conditions of the PET polymer solution were obtained at a concentration of 20%. The average diameter of nanofibers PET was 163 ± 600 nm with a pressure drop of 26.33 ± 5.5 pa, and average efficiencies of 97.42 ± 1.67% and 99.85 ± 0.21 were obtained for submicron and micron particles, respectively, with a quality factor (QF) value of 0.1740.
Conclusion: The produced media can abduct and remove particles from the air stream for submicron and micron particles in ranges of 96-99% and 99-100%, respectively, with an average pressure drop of 26.33±5.5 pa.
Siavash Azad, Yousef Rashidi, Farideh Golbabaei,
Volume 13, Issue 2 (6-2023)
Abstract

Introduction: The important parameters for evaluating the performance of particle filtering respirators in international standards are the filtration efficiency and respiratory resistance of the mask filter against airflow passage. To improve nanofiber filtration efficiency while creating the least breathing difficulty for the wearer, various research has been or is being conducted worldwide. This study investigated the effect of using polyacrylonitrile (PAN) nanofiber composite membrane and montmorillonite clay nanoparticles (MMT) in enhancing particle-filtering respirators’ filter performance, achieving higher filtration efficiency while maintaining optimal respiratory resistance conditions.
Material and Methods: First, PAN polymer solution containing zero, 1%, 2%, 3%, and 5% MMT nanoparticles was prepared, and then PAN/MMT nanofiber composite membrane was synthesized in an electrospinning machine. Filtration efficiency was measured in diameter range of 0.3, 0.5, 1, and 3 microns using sodium chloride aerosol. Additionally, filter breathing resistance was measured at flow rates of 30, 85, and 95 liters per minute.
Results: The efficiency of synthesized composite nanofilters for particle purification can be improved by adding MMT nanoparticles to PAN nanofibers. Optimal MMT concentration was found to be 2%. This addition resulted in an increase in filtration efficiency for particles with sizes of 0.3, 0.5, 1, and 3 microns by 4.2%, 4.88%, 3.77%, and 2.75% respectively without causing significant difference in respiratory resistance. Improved filtration efficiency can be attributed to enhanced morphology of composite nanofilters resulting from addition of MMT nanoparticles. Adding 2% MMT nanoparticles to PAN nanofibers resulted in uniform distribution and smaller fiber dimensions which did not significantly affect Packing density and porosity.
Conclusion: If 2% of MMT nanoparticles are added to PAN nanofibers and used to produce particle respirators, resulting respirator will exhibit a 4.2% increase in particle filtration efficiency without increasing breathing difficulty for user. This result can help protect users from particulate pollutants in air pollution conditions.
Maryam Ghaljahi, Elnaz Rahimi, Azam Biabani, Zahra Beigzadeh, Farideh Golbabaei,
Volume 13, Issue 2 (6-2023)
Abstract

Introduction: Numerous studies have been conducted on the development of modern insulators, including nano-insulators. However, a comprehensive study has yet to be performed to review and investigate the thermal properties of these insulators. Consequently, this study aimed to examine the effect of nanomaterials on thermal insulation function.
Material and Methods: In this review, articles were searched for in English databases (PubMed, Web of Science, and ScienceDirect), Persian databases (Magiran, SID), and Google Scholar. The keywords used in the search were Nano Material, Nano Insulation, Thermal Insulation, Thermal Insulator Stability, and Thermal Conductivity in both English and Persian.
Results: Of the 4068 studies identified through search databases, 15 were selected according to the entry criteria. Among the studies, the three types of silicone, composite, and aerogel insulation had the highest frequency (each 26.67%), and SiO2 nanoparticles were the most prevalent nanomaterial (26.67%). According to the studies, the type of nanomaterial used in insulation will improve its properties such as thermal resistance, mechanical strength, dielectric strength, tensile strength, elasticity, and hardness.
Conclusion: The results of this study showed that using nanotechnology could be an effective step in improving the properties of insulation materials, the most important of which is increased thermal resistance. Moreover, nanotechnology insulators can prevent thermal energy loss, reduce costs, and provide safety and comfort.
Adel Mazloumi, Ali Mohammad Mosadeghrad, Farideh Golbabaei, Mohammad Reza Monazzam Ismailpour, Sajjad Zare, Mahdi Mohammadiyan, Ramazan Mirzaei, Iraj Mohammadfam, Hassan Sadeghi Naini, Masoud Rismanchian, Yahya Rasulzadeh, Gholam Abbas Shirali, Mahmoud , Yahya Khosravi, Hamed Dehnavi, Maliheh Kolahdozi, Hanieh Ekhlas, Mirghani Seyed Somae, Solmaz Balajamadi, Mehdi Ghorsi,
Volume 13, Issue 3 (9-2023)
Abstract


Introduction: Strategic management involves determining the organization’s direction, preparing a strategic vision and mission statement, and providing the basis for growth, profitability, and production. It also includes the inclusion of employee safety and health programs throughout the organization. The existence of a strategic plan for the scientific and practical strengthening of occupational health and safety is one of the country’s academic and industrial priorities. The purpose of this study is to present a strategic plan for developing the specialized field of occupational health and safety engineering in Iran.
Material and Methods: The current study is a collaborative action research study that was conducted in 2021. The strategic planning committee consisted of 20 professors, experts, and doctoral students. Over the course of 14 weeks, they held regular weekly meetings, collected information from inside and outside the organization, analyzed the organization’s internal and external environment, and identified its strengths, weaknesses, opportunities, and threats. Based on this analysis, the committee determined the organization’s mission, perspective, values, and general and specific goals for 2021-2024. They also identified the necessary measures to achieve these goals and developed an operational plan to improve the performance of the specialized field of occupational health and safety.
Results: Conducting this applied research led to the strategy of internal and external analysis of the specialized OHS field, determining the direction of the basic strategy, mission, perspective, values, and general goals. Finally, seven specific goals and 286 actions were determined to improve the performance of OHS. The SWOT analysis of OHS’s internal and external environment identified 27 strengths, seven weaknesses, 26 opportunities, and 12 threats. According to the results of the SWOT matrix, the strategic position of the OHS field is to implement preventive strategies and maintain existing conditions.
Conclusion: This plan aligns with the 4-year OHS plan. In developing the program, attention has been paid to the documents and policies of upstream organizations. The strategic position of occupational health and safety engineering is a prudent strategy. In this situation, strategies for maintaining existing conditions can be applied. Therefore, it is suggested to reduce the weaknesses of OHS as much as possible and increase its strategic capabilities by focusing on prudent strategies. From the second year of implementing the strategic plan, the OHS field can gradually focus on developing activities.
Farideh Golbabaei, Mohammad Javad Sheikhmozafari, Jamal Biganeh, Soqrat Omari Shekaftik,
Volume 13, Issue 3 (9-2023)
Abstract

Introduction: Studies have demonstrated that teaching carries a substantial burden of health risks. Prevalent health issues among teachers include asthma, respiratory diseases, musculoskeletal problems, and mental disorders. These problems can be attributed to the specific attributes of their work environment. Consequently, this study aims to investigate the correlation between air quality within educational establishments and the overall health of teachers.
Material and Methods: This systematic review aims to examine the impact of temperature, humidity, and ventilation rates within educational environments on teachers’ health status and thermal comfort. Relevant studies were searched for using the PubMed and Web of Science databases, employing keywords such as teacher, temperature, humidity, ventilation, school, classroom, health symptoms, and thermal comfort (2000-2022). The inclusion criterion was that articles examined teachers’ health and comfort with temperature, relative humidity, and ventilation of the educational place.
Results: Out of the 103 articles found in the initial search, 13 articles were finally reviewed. Six studies investigated the voice abnormalities of teachers due to various factors (including temperature, relative humidity, and the ventilation rate of the educational place) and found that these abnormalities were affected by these factors. Two studies explored the relationship between the prevalence and exacerbation of respiratory symptoms and quality parameters of the indoor environment of educational places. Additionally, five studies investigated the relationship of air quality parameters of educational places with common non-specific symptoms among teachers.
Conclusion: Teachers frequently experience symptoms such as voice disorders, respiratory difficulties, allergies, and other nonspecific ailments, which may be associated with the quality parameters of the indoor environment in educational settings. These parameters include temperature, humidity, and ventilation rate. Consequently, controlling and regulating these parameters within the recommended values can help prevent the onset or exacerbation of these symptoms.

 
Mirghani Seyed Someah, Farideh Golbabaei, Reza Arjomandi, Farzam Babaei Semiromi, Ali Mohammadi,
Volume 13, Issue 4 (12-2023)
Abstract

Introduction: Despite the legal prohibition of asbestos fiber usage in the country, numerous studies have documented its presence in the air of various cities, including Tehran. This urban air pollution stems from the extensive use of asbestos in construction materials such as pipes, insulators in cooling and heating systems, and friction devices like brake pads and clutch plates, among other consumer products. Prolonged exposure to these fibers can have severe health consequences for residents, leading to respiratory issues, pulmonary fibrosis, and cancers such as mesothelioma. Consequently, we conducted a descriptive cross-sectional study to examine both the extent and nature of asbestos fiber distribution in Tehran’s air.
Material and Methods: This study measured the concentration of asbestos fibers in Tehran’s air over a 12-month period. Monthly samplings were conducted at eleven Tehran Air Quality Control Company-operated stations. The sample collection, preparation, and analysis adhered to the NIOSH 7400 method. Microscopic examination results were then translated into asbestos fiber concentrations using the appropriate formulas.
Results: Analysis of samples taken across four seasons revealed that spring recorded the highest average asbestos fiber concentration at 0.00134 f/ml, while the lowest concentration was observed in summer at 0.117 f/ml.
Conclusion: Given the widespread ban on asbestos use in many countries, including Iran, its presence in urban air is unexpected. Regrettably, flawed policy decisions made during the import ban announcement and the extended timeframe set for the ban’s initiation allowed companies to import and stockpile asbestos indiscriminately for future use.
Fatemeh Fasih-Ramandi, Farideh Golbabaei, Hadi Shakibian, Seyed Mohammad Asadzadeh, Mohammad Reza Monazzam-Esmaeelpour,
Volume 13, Issue 4 (12-2023)
Abstract

Introduction: To ensure employee safety and health, it is crucial to choose and use personal protective equipment correctly. An investigation of the respiratory and hearing protection equipment used in the industries of Tehran was conducted in the present study.
Material and Methods: This study was a descriptive-analytical study conducted in 2023 on 400 occupational health and safety experts in Tehran province. A researcher-made checklist and questionnaire (physical and online versions) were used to determine the criteria that are considered when selecting protective equipment. Statistical analysis and graphing were performed using SPSS-v21 and Excel-2016.
Results: Participants had an average age of 38.66 and an average work experience of 11.78 years. The participants reported 48.3% and 47.7% disapproval of the quality and 42.5% and 39.5% disapproval respectively of the quantity of respiratory and hearing protection equipment available in their industrial units. In addition, 56.3% of them admitted that they have no responsibility for providing or approving the equipment in their workplace. Overall, 27 and 29 criteria were mentioned by study participants pertaining to respiratory and hearing protection equipment, respectively. In the identified criteria, the frequency distribution ranged from 0.3% to 38%.
Conclusion: A high rate of expert dissatisfaction with protective equipment and a low frequency of most of the criteria mentioned indicates that industries aren’t paying much attention to the issue of choosing the right respiratory and hearing protection equipment. To improve the situation, more investigation is needed and practical and operational solutions will be provided. This study highlights the importance of proper selection and use of personal protective equipment in ensuring the safety and health of employees.
Pourya Ahmadi Jalaldehi, Jila Yavarian, Farideh Golbabaei, Saba Kalantary, Abbas Rahimi Foroushani, Hossein Abbaslou,
Volume 13, Issue 4 (12-2023)
Abstract

Introduction: The COVID-19 pandemic has been a significant global health challenge. Primary care services, such as screening health centers, were crucial in identifying infected individuals. However, these centers were often crowded and posed a high risk to staff and non-COVID-19 patients. This study aims to assess the risk of airborne transmission of SARS-CoV-2 in such settings through simulation.
Material and Methods: In this study, waiting and sampling rooms of a COVID-19 healthcare center were simulated using different scenarios. Then, the Quanta emission rate was estimated using the viral load in the sputum of infected individuals. Finally, the airborne transmission risk of SARS-CoV-2 was determined using the Wells-Riley method for scenarios of wearing and without masks.
Results: The study showed that the Quanta emission rate in an unmodulated speaking activity was higher than other expiratory activities in both units (p <0.001). Also, the total amount of Quanta was slightly higher in the sampling room than in the waiting room, which was not statistically significant. On the other hand, the calculation of transmission risk showed that the probability of airborne virus transmission in the sampling room was higher (about 2 to 8%). In addition, wearing masks reduced the possibility of airborne transmission of the virus significantly (77 to 81%).
Conclusion: This study shows that the level of risk in the sampling and waiting rooms is moderate. Masks also significantly reduce the possibility of airborne transmission of SARS-CoV-2. Taking appropriate health and safety measures such as avoiding crowds, wearing masks, whispering, and monitoring social distancing can reduce the plausibility of airborne transmission of the SARS-CoV-2 virus.
 
Mahdi Alinia Ahandani, Saba Kalantary, Monireh Khadem, Fatemeh Jafari, Kamal Azam, Farideh Golbabaei,
Volume 13, Issue 4 (12-2023)
Abstract

Introduction: VOCs are harmful air pollutants that must be detected, monitored and eliminated. Adsorber tubes are standard tools for this task, specifically activated carbon tubes with high adsorption and selectivity. This research aims to compare the structural and functional characteristics of domestically produced activated carbon tubes with the conventional commercial ones for sampling toluene, a volatile organic compound.
Material and Methods: The characteristics of each adsorbent, such as structure, morphology, porosity, and element composition, were examined by SEM photography, BET testing, and EDAX analysis. The central composite design (CCD) method was employed to investigate the adsorption properties of the adsorbents. The input concentration and readsorption time of the samples were the variables considered in this study. Additionally, a field phase of personal air sampling was performed to evaluate the effectiveness of adsorbent tubes.
Results: SEM and BET analyses indicated that the porous structure of domestic activated carbon was comparable to the model produced by SKC. EDAX analysis detected a minor impurity (1%) in the domestic activated carbon adsorbent. The adsorption performance was significantly influenced by the variations in readsorption time and pollutant input concentration. The accuracy and precision of the performance of the domestic adsorbent tube were obtained as 90.77% and 91.76%. The field phase results demonstrated that the amount of pollutant adsorbed in the SKC-activated charcoal adsorber did not differ significantly during 0 to 30 days. However, the domestic adsorber showed a significant difference in the same period. The overall performance of the two adsorbers did not exhibit a significant difference between 0 and 30 days.
Conclusion: Despite minor structural differences, the adsorption efficiency of toluene by domestic adsorbent tubes in sampling high concentrations is very similar to its commercial type. However, it is not recommended for use in low-concentration environments (10 ppm and less).
Ali Mohammad Mosadeghrad, Mohammad Reza Monazzam Ismailpour, Seyed Jamaleddin Shahtaheri, Seyed Abolfazl Zakerian, Adel Mazloumi, Monireh Khadem, Mahya Abbasi, Ali Karimi, Hasan Karimi, Farideh Golbabaei,
Volume 14, Issue 1 (3-2024)
Abstract

Introduction: The purpose of occupational health is to maintain and improve the health of employees and improve their physical, mental and social well-being through the prevention, control and elimination of occupational hazards. It is necessary to integrate educational, research and health service activities to prevent and control potential occupational health hazards in the community. This study aimed to develop a Joint Comprehensive Plan Of Action (JCPOA) for occupational health at Tehran University of Medical Sciences (TUMS).
Material and Methods: In this participatory action research, a strategic planning committee was established, whose members were professors of the occupational health department in the school of public health and managers of the occupational health department in the health deputy of TUMS. The strategic planning committee carried out a strategic evaluation of the internal and external environments of both occupational health deprtments of TUMS and identified the strengths, weaknesses, opportunities and threats. Then, the strategic direction of JCPOA including the vision, mission, values, goals and objectives was determined. Also, the strategies and actions to achieve the goals and objectives were identified. Finally, the action plan to achieve these objectives was developed.
Results: This applied research led to the strategic evaluation of the internal and external environments of the occupational health depratment of the School of Public Health and the occupational health depratment of the Health deputy of TUMS, determining the strategic direction, and finally, developing an action plan to achieve the goals and objectives.
Conclusion: The JCPOA for occupational health was developed using a collaborative and systemic approach. The proper implementation of this plan can lead to the improvement of occupational health indicators in the community. Cooperation between university and industry is necessary for the sustainable development of society.
Saba Kalantary, Mohammad Reza Pourmand, Ensieh Masoorian, Mirghani Seyd Someah, Zahra Barkhordarian, Sara Hajinejad, Farideh Golbabaei,
Volume 14, Issue 2 (6-2024)
Abstract

Introduction: Protection of the respiratory system has been a vital, and for this purpose, various solutions have been proposed, including the use of masks. One of the most important parameters to measure the effectiveness of the mask against the penetration of microbial agents. The present study was conducted with the aim of evaluating the bacterial and particle filtration of medical masks.
Material and Methods: To assess bacterial performance, the national standard 6138, compliant with EN14683, and Type I medical masks were utilized. Staphylococcus aureus bacterial suspension was prepared and passed through the mask using a nebulizer and through an impactor with a flow rate of 28.3 l/min. Plates containing soy agar were placed in the impactor. Subsequently, all plates were incubated, and the bacterial filtration efficiency (BFE) of the masks was determined by counting the bacterial colonies that passed through the mask’s media as a percentage of the total bacteria. It is worth noting that the pressure drop and particle filtration efficiency were also determined for all masks
Results: Based on the results of the particle removal performance for the particle size of 3 µ, the masks were categorized into three groups with efficiency above 99%, above 95% and 90%. According to the standard, all masks had an acceptable pressure drop below 40 Pa. The acceptable bacterial filtration rate for type I masks should be above 95%. The results showed that type A and B masks have an acceptable bacterial filtration rate and there is a significant correlation between the types of masks examined in terms of bacterial and particle efficiency.
Conclusion: The results showed that different types of masks under investigation have significant differences in terms of particle capture efficiency and bacterial filtration performance. In addition, there is a significant correlation between bacterial and particle filtration efficiency.
 
Salimeh Ghassemi Jondabeh, Tooraj Dana, Maryam Robati, Zahra Abedi, Farideh Golbabaei,
Volume 14, Issue 2 (6-2024)
Abstract

Introduction: Improving health and the environment is one of the components of development, social welfare, and economic growth. Another influential factor in increasing health costs and reducing social welfare is work-related accidents and diseases, which impose high costs on individuals, industries, and the national economies of countries. Therefore, using multi-criteria decision-making methods, the present study provided a conceptual model to identify and rank work-related diseases’ environmental and health costs.
Material and Methods: The present study was conducted in 2023. A classification model for the economic evaluation of environmental and health costs of occupational diseases was developed to achieve the study’s aim. In the current research, the Delphi method was used to identify health and environmental criteria, and the Analytic Network Process (ANP) was used to weight the sub-criteria. Finally, the cost of health and the environment was estimated based on the available information. Naft Tehran Hospital (NSHT) was also selected as a case study site.
Results: The results showed that the drug and medical equipment cost factor, with a weight of 0.312 in the treatment sector, and the particular and infectious waste cost factor, with a weight of 0.085, were the most critical factors in the economic evaluation. Also, the parametric model results showed that 99.84% of the total costs are related to health costs, and 0.16% are related to environmental costs. In general, the results of this research showed that 61.3% of the costs of the health sector are related to the two sectors of medicine and medical equipment and the cost of service personnel, and 91.7% of the costs of the environmental sector are related to wastewater treatment and the cost of electricity consumption.
Conclusion: This study presented a semi-quantitative model to estimate health and environmental costs caused by occupational diseases. The results can create a novel scientific insight into implementing control measures using the optimal point of cost-benefit parameters. Implementing this integrated model can be a practical and effective step in allocating resources and prioritizing interventions.
 
Mahdi Mohammadiyan, Nafiseh Nasirzadeh, Akbar Ahmadi Asour, Sepideh Keyvani, Fatemeh Fasih-Ramandi, Farideh Golbabaei,
Volume 14, Issue 2 (6-2024)
Abstract

Introduction: In recent years, exposure to nanomaterials has been known as a challenge among occupational health experts. In this line, personal protective equipment has been considered as a solution to reduce the worker’s exposure. Since respiratory and skin tracts represent the most common workplace exposure routes, knowledge of the efficiency of respiratory and skin protection equipment is particularly important. So, the aim of this study is the assessment of the efficiency of respiratory and skin protection equipment toward controlling nanoparticles in the workplace with a scoping review approach.
Material and Methods: This study was conducted in 2022 with a scoping review approach. Arksey and O’Malley’s five-step framework was chosen as the research method. The search strategy was followed in the databases necessary to access the research data, including PubMed, Google Scholar, Science Direct, Web of Science, and Scopus. Also, EndNote X9® and Microsoft Excel software were used to collect and analyze studies, respectively.
Results: In the first step, 1014 articles were identified. Finally, 38 articles were included in the study to examine quantitative and qualitative information about the efficiency of respiratory and skin protective equipment. Twenty-five articles were related to breathing masks, and six studies were about protective gloves, and seven other articles were devoted to protective clothing. According to the studies of breathing masks, the mean total penetration of nanoparticles was estimated at 2.27%. Also, based on the studies of protective clothing, the maximum penetration of nanoparticles was 30nm for protective clothing made of polypropylene and polyethylene with different layers.
Conclusion: Although the efficiency of existing personal protective equipment showed a good result for controlling nanoparticles, the size of nanoparticles is one of the essential parameters in determining the efficiency of the equipment, which should be considered the workplaces. So, it is recommended that more studies be considered to improve their efficiency, and standard tests should be developed to evaluate them.
Zahra Beigzadeh, Farideh Golbabaei, Mahdi Niknam Shahrak, Fariborz Omidi, Jamaleddin Shahtaheri,
Volume 14, Issue 3 (10-2024)
Abstract

Introduction: The use of antineoplastic drugs in cancer treatment, while essential, poses risks due to their non-selective action on both cancerous and healthy cells. Assessing and controlling environmental contamination with these drugs in workplaces is crucial. This study aimed to evaluate the efficacy of various commercial wipes in sampling the antineoplastic drug 5-fluorouracil from surfaces to develop standardized sampling methods.
Material and Methods: This study assessed the efficiency of commonly used commercial wipes (Whatman cellulose filter, cotton swab, Millipore™ filter, sterile gauze pad, and alcohol pad) for sampling 5-fluorouracil from different surfaces (stainless steel, vinyl, and ceramic). The sampling area was defined using disposable cardboard frames, and 1000 microliters of a 1 µg/mL 5-fluorouracil solution were applied to each surface. Sampling and extraction were conducted following NIOSH guidelines. The frame dimensions were 10 × 10 cm, limiting the sampling area to 100 square centimeters. Analysis was performed using high-performance liquid chromatography (HPLC), and results were analyzed using Prism GraphPad software, version 8.
Results: The sampling efficiency varied across wipes and surfaces, ranging from 11.2% to 86.2%. Alcohol pads showed the highest efficiency on stainless steel surfaces, while the Millipore™ filter had the lowest efficiency across all surfaces. Extraction efficiency ranged from 43.8% to 98.8%, with alcohol pads providing the highest recovery. Sample stability was maintained over 15 days.
Conclusion: Alcohol pads were most effective in collecting and extracting 5-fluorouracil, particularly from hard, smooth surfaces such as stainless steel and ceramic. These findings may improve sampling methods, thereby reducing occupational exposure to antineoplastic drugs. Further research on different wipes and extraction parameters could refine drug analysis techniques. 
Elnaz Rahimi, Azam Biabani, Maryam Ghaljahi, Farideh Golbabaei,
Volume 14, Issue 3 (10-2024)
Abstract

Introduction: Workers who work in warm situations need clothes with better thermal regulation. Nowadays, improving the thermal regulation properties of cotton fabric by treating it with phase change materials (PCMs) has been considered. The type of fabric plays an important role in providing thermal comfort. Cotton fabric is the most popular raw material in the textile industry due to its distinctive features. Therefore, this systematic review aims to investigate the effects of PCM nanoencapsulation in commonly used cotton fabrics, including morphology, thermal properties, thermal stability, tensile strength, abrasion resistance, leakage, water absorption, washing ability, and breathability of the fabric, related challenges, and future research trends.
Material and Methods: This research was conducted with the papers obtained from the systematic search in Science Direct, Web of Sciences, Scopus, and PubMed databases. Keywords “nanoencapsulated phase change materials”, “nanoenhanced phase change materials”, “cotton”, “cotton fabric”, and “cotton textiles” were used.
Results: Of the 1251 studies identified through search databases, 13 were selected according to the entry criteria. The results revealed that in all the studies, PCM nanocapsules were successfully synthesized and inserted into the cotton fabric, improving the fabric’s thermal properties. Most studies used in situ polymerization and mini-emulsion polymerization for nanoencapsulation. The pad-dry-cure method was also widely used for applying nanocapsules to cotton fabric.
Conclusion: This systematic review showed that synthesized nanocapsules of phase change materials and applied them to cotton fabric can improve the thermoregulating properties of the fabric. It is suggested to expand the research to design thermoregulating clothes made from treated fabrics and investigate their cooling performance.
Akram Tabrizi, Mostafa Jafarizaveh, Hamid Shirkhanloo, Farideh Golbabaeie,
Volume 14, Issue 4 (12-2024)
Abstract

Introduction: Volatile organic compounds (VOCs) are hazardous toxic pollutants in the air, which are released from various industrial sources. Due to the adverse effects of xylene on health, the effective removal of VOCs from the air by nano sorbents is crucial. In this study, nanographene (NG) and nanographene oxide (NGO) were used as adsorbents to investigate the efficiency of xylene removal.
Material and Methods: In this study, in order to investigate the absorption efficiency of nanographene and nanographene oxide after the synthesis of nano absorbents in a dynamic system, xylene vapor was produced in a chamber in pure air and stored in a Tedlar sampling bag and then transferred to the adsorbent. Subsequently, the effect of various parameters such as xylene concentration, inlet air flow rate, and absorbent mass values at 32% humidity and 25°C temperature on the absorption rate and performance of the desired absorbents was investigated. Finally, the gas chromatographic flame ion detector (GC-FID) determined the concentration of xylene in air after the adsorption-desorption process.
Results: The average adsorption efficiencies for NG and NGO were found to be 96.8% and 17.5%, respectively. The characteristics of the NG and NGO adsorbents indicated that the particle size range was less than 100 nanometers.
Conclusion: The results demonstrated that the adsorption efficiency of NG for the removal of xylene from the air is higher than that of NGO. The GC-MS method validated the proposed approach in real air samples.

Page 3 from 4     

© 2025 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb