Showing 46 results for Ba
Mohammad Javad Sheikhmozafari, Zahra Hashemi, Ali Mohsenian,
Volume 14, Issue 4 (12-2024)
Abstract
Introduction: Micro-perforated panel (MPP) absorbers are emerging as next-generation absorbers due to their considerable advantages. However, their main drawback compared to other absorbers is their limited bandwidth. This study aims to investigate methods for enhancing the bandwidth of an MPP in the frequency range of 1 to 1500 Hz through simulation using the Finite Element Analysis (FEA) in COMSOL software.
Material and Methods: The modeling was conducted using FEA in COMSOL version 5.3a. To increase the bandwidth, techniques such as series-parallel configurations, symmetrical and asymmetrical air gap depths, and the incorporation of two porous absorbing materials in symmetric and asymmetric air gap layers were employed. In the initial phase, the best configuration was selected and retained for the subsequent stages.
Results: The optimal arrangement involved two upper MPPs having larger holes and a lower perforation percentage compared to the two lower MPPs. It was also found that increasing the depth difference between the air layers of the upper and lower MPPs led to a greater increase in bandwidth than when they were closer together. Furthermore, the use of fibrous porous materials in one of the layers resulted in a reduction of resonance peak while enhancing the bandwidth.
Conclusion: MPP absorbers exhibit diverse behaviors due to their Helmholtz structure and parametric design. If their constituent parameters are tailored to match the acoustic characteristics of the target sound, they achieve optimal efficiency. Additionally, employing numerical methods such as FEA serves as a suitable alternative to more costly laboratory methods.
Fatemeh Sadat Mirnajafi Zadeh, Mojtaba Khosravi Danesh, Ali Nahvi, Abbas Rahimi Foroushani, Mohammad Javad Sheikhmozafari, Adel Mazloumi,
Volume 14, Issue 4 (12-2024)
Abstract
Introduction: Despite advancements in road safety and vehicle design, road accidents remain prevalent, a quarter of which are caused by driver distraction. This issue is particularly critical in the public transport sector, especially among urban bus drivers, as distraction can lead to serious injuries and fatalities. Accordingly, this study explored the factors influencing distraction among urban bus drivers through a qualitative approach and a macroergonomics perspective.
Material and Methods: In this study conducted in 2024 in Tehran, 18 urban bus drivers were selected through cluster sampling. The participants included 10 drivers from bus rapid transit (BRT) system and 8 drivers from non-BRT services. Data were collected through semi-structured interviews with the drivers as well as on-site observations. Subsequently, a directed qualitative content analysis approach, based on the balance theory model, was used to analyze the collected data.
Results: The findings revealed that the primary sources of distraction belonged to six levels of the work system, the most cited of which were environment, tasks, and organization. Specifically, inappropriate behavior of other street users as an environmental factor and the driver’s interactions with passengers as task-related factors were identified as key sources. Additionally, organizational factors such as interactions with supervisors and colleagues, as well as salary issues, were significantly important. The participants very limitedly expressed using mobile phone while driving as a main distractor to their driving.
Conclusion: The current study identified various influential factors, spanning different levels of the work system, affecting bus drivers’ distraction, including generic factors that impact all urban drivers and specific factors that uniquely affect bus drivers. Addressing these factors through providing appropriate education for both passengers and street users along with implementing management strategies in the organization to enhance intra-organizational relationships and organizational support can lead to the safety of the bus drivers.
Marzieh Mohammadi, Zeinab Kazemi, Marzieh Izadi Laybidi, Mohammad Sadegh Ghasemi,
Volume 14, Issue 4 (12-2024)
Abstract
Introduction: Operating room personnel are involved with occupational physical activities such as repetitive bending, holding surgical tools and standing for long hours that can lead to musculoskeletal disorders (MSDs). Low back pain (LBP) is the most prevalent and costly problem among these disorders. The aim of this study was to determine the relationship between occupational physical activity, LBP and disability among operating room personnel.
Material and Methods: A total of 60 operating room personnel voluntarily participated in the study, all of which had at least two years of working experience. At the end of a working week, the degree of disability and pain were assessed by Graded Chronic Pain (GCP) questionnaire. The International Physical Activity Questionnaire (IPAQ) was used to evaluate the level of physical activity. Simple linear regression was conducted to investigate the relationship between physical activity, LBP and disability.
Results: The survey using the GCP questionnaire revealed that 58.3% of participants reported experiencing occupational back pain, while 41.7% reported no back pain. Among those with back pain, the average pain intensity was rated 43.11 (18.22) on the scale. Pain remained stable for an average of 2.3 days (standard deviation = 0.95). The average level of disability associated with back pain was 32.09 (27.44). Statistical analysis using simple linear regression showed a significant relationship between back pain and several factors: vigorous physical activity (p-value = 0.02), prolonged sitting time (p-value = 0.01), and chronic pain (p-value < 0.001).
Conclusion: Occupational physical activity characterized by low intensity, but high repetition and standing for a long time in fixed postures were the most significant contributors to lumbar back pain among operating room personnel. Chronic pain in this population was reported as grade 2, indicating severe pain with minimal disability; if left unaddressed, this could lead to movement restrictions.
Soqrat Omari Shekaftik, Jamal Biganeh, Maedeh Hosseinzadeh, Hamidreza Jafari Nodoushan, Neda Mehrparvar,
Volume 14, Issue 4 (12-2024)
Abstract
Introduction: Workplaces often contain potential risks, such as exposure to toxic chemicals. Conducting a thorough health risk assessment helps employers recognize these dangers and implement necessary controls. In the 20th century, modern risk assessment frameworks began to be established with the rise of public health agencies.
Material and Methods: The present study is a narrative review. In order to obtain necessary information, Persian and English texts were searched in Web of Science, PubMed, Scopus, SID and Magiran databases. Keywords such as “health risk assessment”, “chemicals” and “nanomaterials” were used in this study.
Results: Both quantitative and qualitative health risk assessments play critical roles in occupational health, with each method providing different levels of depth and accuracy depending on the situation. EPA Model, Monte-Carlo Simulation, Physiologically Based Pharmacokinetic (PBPK) Modeling, Quantitative Structure-Activity Relationship (QSAR) Models, Probabilistic Risk Assessment (PRA), Life Cycle Impact Assessment (LCIA), and Biologically Based Dose-Response (BBDR) Models, are among the most important quantitative methods for assessing the health risk of chemicals. COSHH Model, ICCT Model, ICMM Model, Australian Model, and Romanian Model, are the most important qualitative methods for health risk assessment of chemicals. In addition to the quantitative and qualitative methods, semi-quantitative methods like Singapore Model, LEC Method, and SEP Model, have also been proposed for assessing the health risk of chemicals. The preference for qualitative over quantitative methods in the risk assessment of activities involving nanomaterials stems from substantial uncertainties, limited data availability, and the unique and complex behaviors of nanomaterials in the workplaces.
Conclusion: Overall, the evolution of health risk assessment methods reflects a continuous drive towards greater accuracy, reliability, and relevance. As we continue to innovate and expand our knowledge, the field is well-positioned to address the complex and evolving landscape of chemical and material risks, ensuring the protection of human health and the environment.
Miss Aida Naghshbandi, Mr Omran Ahmadi,
Volume 15, Issue 1 (3-2025)
Abstract
Material and method: In this study, industrial accidents during gas pipeline excavation and piping operation were analyzed using Bowtie method. The Fuzzy DEMATEL method was used to determine relationships between accident root causes, and the Fuzzy AHP method was used to compare pairs of causes and determine their weight. Finally, Bowtie and DEMATEL outputs were mapped in Bayesian networks and important risk factors of accident were determined.
Introduction: Identifying and modeling the root causes of accidents can play an important role in preventing them. The purpose of this study is to identify and model the causes of gas pipeline excavation and piping operation accidents using Bayesian network (BN) and fuzzy DEMATEL.
Results: The most important risk factors for trench collapse accident were risk management (16% impact weight), competency assessment (14.2% impact weight), supervision (13.8% impact weight), work permit system (13.7% impact weight), compliance with requirements and guidelines (13.4% impact weight), training (11.4% impact weight), HSE system (9.5% impact weight) and contractor management (8%impact weight).
Conclusion: From the results obtained in this study, it can be said that the risk management and competency assessment with a higher weight percentage play a more important role in the occurrence of trench collapse accident. The results of this study can be used to prioritize corrective actions to prevent trench collapse accidents in gas pipeline excavation and piping operations.
Mr Alireza Azarmehri, Dr Ali Karimi, Dr Omran Ahmadi,
Volume 15, Issue 1 (3-2025)
Abstract
Introduction: Barriers are critical to mitigating risks and preventing catastrophic incidents in process industries. Human and Organizational Factors (HOFs) significantly impact safety barrier performance. This systematic review investigates existing frameworks and methods for assessing HOFs' influence on safety barrier performance.
Material and Methods: A systematic search was conducted across Scopus and Web of Science databases, adhering to the PRISMA guidelines. The search aimed to identify studies that presented methodologies for evaluating the impact of HOFs on safety barrier performance in process industries. Subsequently, data were extracted from the 16 included studies.
Results: The 16 studies included in this research presented methods and frameworks that examined the impact of human and organizational factors on various types of safety barriers, including technical, operational, and human barriers, across a wide range of industries such as oil and gas, chemical, and steel. Barrier and Operational Risk Analysis (BORA) was identified as the predominant framework among studies. Studies on operational and human barriers, which rely on human actions and procedures, often identified factors such as competence, training, communication, and supervision as influencing their performance. Regarding technical barriers, studies emphasized the need to assess factors such as maintenance management and procedures.
Conclusion: Thorough HOF assessment is crucial for developing effective risk management strategies in process industries. While progress has been made, the scope of assessment methods should be expanded to cover a wider range of industries and barrier types. To make assessments more objective, integrating data from multiple sources and using techniques based on fuzzy logic and Bayesian networks (BN) can help reduce reliance on expert judgment. The presented methods should also be complemented by dynamic assessment of HOFs with continuous monitoring to ensure the ongoing effectiveness of safety barriers.