Search published articles


Showing 9 results for Bahrami

Mahdi Jamshidi Rastani, Farshid Ghorbani Shahna, Abdolrahman Bahrami, Somayeh Hosseini,
Volume 6, Issue 2 (6-2016)
Abstract

Introduction: Adherence to the design values and ventilation standards (VS) after installing and also maintaining continuous work of ventilation system with maximum performance throughout its life are amongst the reasons of ventilation systems monitoring. Therefore, the aim of this study was to evaluate performance of local exhaust ventilation system for control of dust by measuring the operating parameters and also to compare it with ventilation standards (VS) and design values.

Material and Method: The present research is a descriptive and cross-sectional study, conducted in three sections of measuring, monitoring and evaluating the operating parameters on hoods, channels and fan of ventilation system based on the current status of the system, documentation (design), and recommended standards (VS). Static pressure, velocity pressure, surface area, and flow rate were measured based on the recommendations of various sources and ACGIH industrial ventilation manual, and the data were compared with the design and recommended values, using the SPSS software version 16.  

Result: The results of paired sample t-test between flow rate and velocities of design and current status, showed significant differences in various parts. Accordingly, the results revealed a reduction of more than 50% in the design duct velocity compared to the current duct velocity, while design duct velocity is 1.3 more than the standard duct velocity of current status, and current duct velocity is about 65% of standard duct velocity.

Conclusion: The reduction and nonconformity of the results of measurements of operating parameters (after a minimum of two decades) with design and standard values are corroborant and sufficient reason for obstructions, abrasions, leaks, imbalance of system ducts and their inefficiency in some branches. Since there is no base line measurements for system (supposing that the system worked with maximum amounts of setup time), one of the reasons for these changes can be attributed to lack of schedule for regular and appropriate maintenance.


Mahdi Jamshidi-Rastani, Farshid Ghorbani Shahna, Abdolrahman Bahrami, Somayeh Hosseini, Abdullah Barkhordari,
Volume 7, Issue 4 (12-2017)
Abstract

Introduction: Efficiency of hoods for local exhaust ventilation system is influenced by hood geometry, its situation relative to the process and the air volume exhausted by it. The aim of this study was to present a simple and practical method based on the standards for assessment of potential problems of ventilation system in a steel making company.  

Material and Method: In this cross-sectional study, a checklist based on the ACGIH ventilation standards was developed for investigating potential problems related to the three types of hoods in an oxide screen process. This checklist has completed in order to feasibility study of corrective changes in evaluation of the hood hardware parameters. The differences between design and current status to the standards were considered as noncompliance. Finally, differences were analyzed statistically.   

Result: Based on statistical analysis, the average of current status of hoods, plans and design documents and standards were for variables of conveyors downstream enclosure (1.6, 2.38 and 2.41m), vertical distance from hoods to conveyors (0.39, 0.37 and 0.61m), conveyor longitudinal enclosing after hood (1.225, 1.288 and 0.296 m) and hood numbers (18, 17 and 31), respectively. Comparing the results between current status of hoods with plans and design documents showed no significant differences (0. P-value≤ 0.05). But, the results between current status of hoods and design documents with standards have significant difference (0. P-value≥ 0.05). A significant difference  (0. P-value≥ 0.05) revealed between the average of the current status of hoods, plans and design documents and the standards for variables of hood flow (813.3, 2276.9 & 3085.9 cfm) and duct velocity leading to the hoods (2289.3, 5083.5 & 3500 fpm), respectively.

Conclusion: This method can be applicable for the local ventilation systems with extensive pollution sources and hoods. One of the advantages of this method can be easily application of this system, as one of the requirements for delivering ventilation systems from contractors and the use of it for studying potential problems of the hoods that they have standards. Also, by comparing current status of hoods with the design specifications and standards, the mismatches/ unconformities in the lifetime and maintenance process of the system can be understood.


Shiva Soury, Abdulrahman Bahrami, Saber Alizadeh, Farshid Ghorbani Shahna, Davood Nematollahi,
Volume 10, Issue 2 (5-2020)
Abstract

Introduction: In this study, Zn3(Btc)2 (metal organic framework) sorbent was introduced for sampling of Benzo[a]pyren from the air. The purpose of this study was to develop the sampling and analysis method by needle trap, with no sample preparation step.
Material and method: Zn3(Btc)2 sorbent was electrochemically synthesized and its properties were specified by FTIR, FE-SEM, and PXRD techniques. A glass chamber with a temperature of 120°C was used to make the certain concentration of Benzo[a]pyren. Factors affecting the efficiency of needle trap were evaluated and optimized using a response surface method considering a specific operating interval to achieve the highest efficiency. The performance of the proposed method was also investigated using the real samples.
Results: The highest desorption efficiency of Benzo[a]pyren was obtained when using the needle trap containing Zn3 (Btc)2 sorbent at 379°C and 9 min retention time. No significant reduction was observed in the analyte concentration by maintaining the sampler for 60 days. The limit of detection and limit of quantification of Benzo[a]pyren were obtained 0.01 and 0.03 mg/m3, respectively. The percentage of standard deviation of the measured values of Benzo[a]pyren in diesel exhaust was calculated 4.1%.
Conclusion: The highest desorption efficiency of Benzo[a]pyren was obtained when using the needle trap containing Zn3 (Btc)2 sorbent at 379°C and 9 min retention time. No significant reduction was observed in the analyte concentration by maintaining the sampler for 60 days. The limit of detection and limit of quantification of Benzo[a]pyren were obtained 0.01 and 0.03 mg/m3, respectively. The percentage of standard deviation of the measured values of Benzo[a]pyren in diesel exhaust was calculated 4.1%.

Sajad Bahrami, Ahad Sotoudeh, Naser Jamshidi, Mohammad Reza Elmi, Mohammad Saeid Poorsoleiman,
Volume 11, Issue 4 (12-2021)
Abstract

Introduction: Chemical industries often have risks for the environment and communities, due to the use of complex facilities and processes. Also, in the ammonia tanks, the probability of risk of explosion is high, owing to their specific characteristics. The aim of this study is to evaluate the risks of explosion scenario at the ammonia tank in the Kermanshah petrochemical complex
Material and Methods: To achieve the purpose of this study, the Fuzzy Fault Tree Analysis (FTA) method was used to estimate the probability of reliability in the basic events. In this study, after drawing Fault Tree for identifying basic events, the probability of basic events was estimated by means of expert’s elicitation, and the probability of minimal cut sets was computed through Boolean logic gates.
Results: According to the results, the probability of occurrence of the top event was obtained equal to 0/054997. In the minimal cut set prioritizing, the failing of pressure safety valves identified as the most effective factor in the top event occurrence, and afterward failing the control valves and human errors were identified.
Conclusion: This study indicates that, based on expert elicitation, a fuzzy error tree method can be used to assess the risk of various scenarios in the industry. Overall, in assessing the risk of the explosion scenario in the ammonia reservoir, it was found that some minor defects, and even human error, could be considered as a major contributor to the explosion.
 
Haniyeh Ekhlas, Hamidreza Pouragha, Mohammadreza Monazzam, Ramin Mehrdad, Parisa Bahrami, Mojgan Zaeimdar,
Volume 11, Issue 4 (12-2021)
Abstract

Introduction: Previous studies have been conducted on the effects of exposure of industrial workers to high levels of noise and their association with mental health or exposure of people to harmful levels of environmental noise. In this study, we investigated the association between moderate noise levels and the symptoms of depression, anxiety, and stress in non-industrial workers.
Material and Methods: This study is a Cross-Sectional study that was conducted using the enrollment phase data of the Tehran University of Medical Sciences Cohort (TEC) study. The study population consisted of 3899 workers of Tehran University of Medical Sciences who were employed in seven occupational groups of the university, Office Workers, Healthcare workers, technical personnel, services workers, security guards, and radiology-radiation units. Exposure to moderate noise level was examined using the Leq10min index, and the Depression Anxiety Stress Scales were examined on the mentioned population by DASS-42 questionnaires.
Results: The results showed that the prevalence of severe to very severe symptoms of depression, anxiety and stress were 8.2, 7.9, and 11% respectively. Also, it was observed that 14.5% of the participants of the study were exposed to noises of more than 70 dB(A). Furthermore, the results indicated that the highest average noise was equal to 71.3 dB(A) for the technical staff group, and the lowest value with an average of 59.1 dB(A) was recorded for the office workers group. The symptoms of severe to very severe depression was associated with exposure to noises above 70 dB(A) (OR:5.22) anxiety (OR:1.16), stress (OR:1.17) and socioeconomic status (OR:1.84). The severe to very severe anxiety was associated with stress (OR: 1.25). On the other hand, the symptoms of severe to very severe stress was associated with variables of age (OR:0.99), gender (OR:0.46), socioeconomic status (OR:1.52), having job management position (OR:0.81) and having healthcare working job (OR:0.65).
Conclusion: Regarding the obtained results of the present study, it was concluded that exposure to moderate noise levels had positive and significant association with depression in non-industrial workers. In non-industrial work environments, exposure to moderate noise levels is and can be independently associated with depression.
Zahra Tarin, Abdulrahman Bahrami, Mohsen Goodarzi, Farshid Ghorbani-Shahna,
Volume 12, Issue 2 (6-2022)
Abstract

Introduction: Generally, geometrical parameters of the cyclone have a profound effect on determining its performance. The air outlet (Vortex Finder) as one of the cyclone’s components has a significant impact on the cyclone’s internal flow pattern, pressure drop and even dust removal efficiency.
Material and Methods: Two different air outlets were designed in order to be easily installed and removed. The ribs (both in the opposite and the same swirl direction with the air flow) were inserted at the inner wall of the vortex finder. The step length of the blades was calculated to be 1.5. The dust feeder was injected the silica particles with a concentration about of 2.1 gr/m3 into the inlet air. The results of dust removal efficiency of the cyclone were calculated and compared for three groups of total dust, PM10 and PM2.5 in different experimental conditions.
Results: Installation of spiral blades in same swirl direction as the air flow inside the cyclone increased 7.75, 7.73 and 6.75 percent in total efficiency, PM10 and PM2.5, respectively. The dust removal efficiencies for total dust, PM10 and PM2.5 increased by 2.6%, 2.33% and 1.5%, respectively, when the swirl direction of ribs and air flow was the opposite. The effect of helical blades on pressure drop for the first experimental setup (same direction) decreased by (- 2.5%) and in the second one (opposite direction) increased by (+ 2.03%). The best quality factor was also calculated for the cyclone with the blade aligned with the air flow direction.
Conclusion: Use of ribs in the inner wall of the cyclone vortex finder,  especially when the rotation direction of the ribs and airflow are the same, leads to a decrease in pressure drop and increase in dust collection efficiency which finally leads to improvement of cyclone performance.

Adel Jafari, Farshid Ghorbani Shahna, Abdulrahman Bahrami, Majid Habibi Mohraz,
Volume 13, Issue 2 (6-2023)
Abstract

Introduction: With the spread of the COVID-19 pandemic and the lack of adequate protection by existing protective equipment, many researchers’ attention has turned to developing improved respiratory protection equipment. Considering their special properties and nanoscale dimensions, electrospun nanofibers are a suitable option for improving operational characteristics of substrates used in conventional facemasks. This study aimed to optimize the electrospinning process of polyacrylonitrile nanofibers (PAN) containing ZIF8 and use the optimized substrate in medical facemasks to increase their protective performance.
Material and Methods: This study employed an environmentally friendly method to synthesize ZIF8 in an aqueous environment. Then, PAN/ZIF8 polymer solutions were prepared in dimethylformamide. The effects of electrospinning parameters, including electrospinning voltage, polymer solution concentration, electrospinning distance, and polymer injection flow rate on diameter and uniformity of nanofibers were investigated. Electrospinning conditions were optimized using response surface methodology (RSM) and central composite design (CCD) to obtain desired values for response (dependent) variables. Finally, optimized PAN/ZIF8 and PAN nanofibers were electrospun on spun-bond substrate. Base weight, average diameter of fibers, filtration performance, pressure drop, and quality factor of fabricated substrates were assessed.
Results: According to results, optimal conditions for electrospinning of PAN/ZIF8 polymeric solution for polymer concentration (A), electrospinning voltage (B), electrospinning distance (C), and polymer injection flow rate (D) were respectively 70 w/v%, 20 kV, 18 cm, and 0.4 ml/h. Moreover, despite lower base weight of PAN/ZIF8 nanofiber mask, it displayed higher filtration performance (98.51%), lower pressure drop (31.42 Pa), and higher quality factor (0.140 Pa-1) in comparison to other studied masks.
Conclusion: Experimental models developed in this study provide acceptable values for filtration efficiency and quality factor for filtration applications. Additionally, they serve as a guideline for subsequent experiments to produce uniform and continuous nanofibers with desired diameter for future applications in absorbent media (intermediate absorbent layers) of respirators.
Nematullah Kurd, Abdulrahman Bahrami, Abbas Afkhami, Farshid Ghorbani Shahna, Mohammad Javad Assari, Maryam Farhadian,
Volume 13, Issue 3 (9-2023)
Abstract

Introduction: Toluene, benzene, xylene, and ethylbenzene (BTEX) belong to the class of monocyclic aromatic hydrocarbons and are identified as toxic volatile compounds due to their harmful properties. The reliable biomarkers for occupational exposure to these toxic compounds are hippuric acid (HA), trans,trans-muconic acid (tt-MA), mandelic acid (MA), and methylhippuric acid (MHA), which correlate with toluene, benzene, ethylbenzene, and xylene, respectively.
Material and Methods: A novel magnetized imine-linked covalent organic framework (Fe3O4@TFPA-Bd) was synthesized, marking its inaugural use as a sorbent in microextraction by packed sorbent (MEPS). The synthesis of Fe3O4@TFPA-Bd was executed in a straightforward and efficient manner, using Fe3O4 nanoparticles as the magnetic core and benzidine (Bd) and Tris (4-formyl phenyl) amine (TFPA) as the structural building blocks. This newly produced sorbent was tested for the microextraction of hippuric acid (HA), mandelic acid (MA), trans, trans-muconic acid (tt-MA), and m-methyl hippuric acid (m-MHA) from urine samples, which were then analyzed using high-performance liquid chromatography (HPLC). In order to optimize the extraction performance, parameters like sample volume, elution volume, extraction cycles, pH, and sample solution temperature were thoroughly adjusted. The synthesized adsorbent underwent thorough characterization via scanning and transmission electron microscopy (SEM and TEM), Fourier transforms infrared spectrometer (FTIR), and X-ray diffraction (XRD).
Results: The developed method showcased promising attributes: low detection limits (0.02 µg/ml for tt-MA, S/N=3), low quantification limits (0.06 µg/ml for tt-MA, S/N=10), a solid linear range (0.5-320 µg/ml for MA, R > 0.99), and commendable intra- and inter-day precision (2.4%-4.3% and 3.1%-7.8%, respectively) for volatile organic compound (VOC) biomarkers. Furthermore, the method demonstrated recoveries in the 81-87.5% range for spiked samples, indicating its practicality and effectiveness.
Conclusion: The developed procedure was suitable for the determination of BTEX biomarkers from urine samples and can be an alternative to previous methods.
Abbas Bahrami, Hossein Akbari, Mahdi Malakoutikhah,
Volume 14, Issue 3 (10-2024)
Abstract

Introduction: Given the importance of the employment status of graduates for countries, the current study aims to investigate the employment status of occupational health and safety engineering (OHS) graduates from Kashan University of Medical Sciences (KAUMS), from the establishment of the field in 1996 up until 2023
Material and Methods: The cross-sectional study examined the employment status of OHS graduates of KAUMS using a researcher-developed Google form questionnaire. The questionnaire included demographic characteristics, five questions for unemployed individuals, and 60 questions for employed individuals. Finally, descriptive and analytical analyses of the study were performed using SPSS v16 software. 
Results: A total of 229 graduates participated in this study. The results regarding the frequency of employed and unemployed participants showed that 198 (86.5%) participants were employed, and 31 (13.5%) were unemployed at the time of the study. Most employed participants (46%, or 90 individuals) work in the industry and mining sector. Evaluating the effectiveness of the educational course of employed participants in relation to their jobs revealed that 88 participants (44.4%) believe that the subjects taught in the courses are moderately compatible with work needs. 
Conclusion: With the advancement of industries and the expansion of production, the need to control harmful factors and improve workers’ health is more evident than ever before, making it likely that graduates of this field will have favorable job prospects in the future. On the other hand, the academic conditions should be improved, particularly regarding the quality of the educational and curriculum programs of KAUMS. 
 

Page 1 from 1     

© 2025 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb