Search published articles


Showing 3 results for Abbasinia

F. Golbabaei, A. Mazloumi, S. Mamhood Khani, Z. Kazemi, M. Hosseini, M. Abbasinia, S. Fahang Dehghan,
Volume 5, Issue 1 (4-2015)
Abstract

Introduction: Working in hot and inappropriate climate condition is one of the most common problems of occupational health which can lead to heat induced diseases and even death. Heat stress may impair the cognitive processes involved in decision-making and converting simple tasks to complex ones. The aim of present study was to assess selective attention and reaction time among workers in a casting unit of a car manufacturing industry and to investigate the effects of heat stress on mentioned variables.

.

Material and Method: In this retrospective cohort study 70 workers from a hot industry were selected in two of exposed and control groups. First, demographic questionnaire was completed for each of the participants and noise and light were measured as the likely confounding factors. Stroop test 1, 2, and 3 were done before and during the work in order to determine the effects of heat on selective attention and reaction time. Besides,WBGT were measured at the ankle, waist, and head levels. Data were analyzed using SPSS software, version 18.

Result.: WBGT measurements showed that the mean WBGT were 33 and 16.7 for the exposed and not exposed groups, respectively. Moreover, no significant relationships were observed between test duration, reaction time, and number of errors in Stroop tests 1 and 2 and the level of heat (P-value<0.0001). However, the mentioned variables had a significant positive correlation with Stroop test 3. Additionally, for exposed group variables of test duration, reaction time, and number of errors in Stroop 3 were significantly higher than those of control group.

.

Conclusion: According to the findings in present study, heat stress causes an increase in reaction time and a decrease in selective attention. Thus, heat can be assumed as a stressor in hot work environments and the heat should be taken into account while design of job and tasks which needed selective attention or reaction time.


Parvin Nassiri, Mohammad Reza Monazzam, Farideh Golbabaei, Aliakbar Shamsipour, Hossein Arabalibeik, Marzieh Abbasinia, Masoumeh Chavoshi, Mehdi Asghari,
Volume 7, Issue 2 (6-2017)
Abstract

Introduction: Heat stress is caused by many factors such as individual factors, environmental factors, and management factors. Individual risk factors can decrease the heat tolerance, and play an important role in heat stress disorders incidence. The aim of this study was to review individual parameters influencing the thermal stress and review the preceding studies.

Material and Method: In this review study sites such as Web of Science, Scopus, Pubmed, Iran Medex, Magiran, Google Scholar and SID databases were used for search. The keywords included heat stress, personal factors and heat exposure. The period of 1995 to 2015 was investigated, and finally 75 original articles were identified.

Result: At the individual level, exposure with a single risk factor may reduce the workers’ heat tolerance; while exposure with a combination of several risk factors probably synergistically increases the risk of heat-related disorders. Individual risk factors include age, gender, obesity, fatigue, race, and previous heat disorders and dehydration. In addition, some diseases (such as cardiovascular disease, diabetes and infectious diseases) or use of certain drugs or alcohol can reduce the heat tolerance.

Conclusion: It is necessary to pay attention to the mentioned items when selecting workers in the hot environments. Also, due to the lack of awareness and knowledge of workers, it is necessary to provide appropriate training programs to reduce the effects of heat stress.


Marzieh Abbasinia, Omid Kalatpour, Majid Motamedzade, Ali Reza Soltanian, Iraj Mohammadfam, Mohammad Ganjipour,
Volume 12, Issue 2 (6-2022)
Abstract

Introduction: Emergencies are unforeseen and unpredictable situations. In these situations, people’s performance is affected by various factors that cause stress. People’s performance in such situations can also affect human error probability. The purpose of this study was to evaluate human error in emergency situations based on the fuzzy CREAM and Fuzzy Analytical Hierarchy Process (FAHP).
Material and Methods: This descriptive-analytical study was performed in a petrochemical industry in Markazi province in 2019. The FAHP was used to prioritize emergency situations. To evaluate human error in these conditions, the weights of Common Performance Conditions (CPC) was determined using Analytical Hierarchy Process (AHP) method. Human error probability was calculated using a fuzzy CREAM method in the most important emergency situations.
Results: The results of the FAHP showed that “Hydrogen leak from the cylinder joints in the olefin unit” was the most important emergency. The highest relative weight was related to crew collaboration quality (0.06) in the emergency situation.
Conclusion: This method can also be used to identify the important factors in human error occurrence and high weighted CPCs and plan to control them.


Page 1 from 1     

© 2025 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb