Volume 12, Issue 3 (9-2022)                   J Health Saf Work 2022, 12(3): 499-513 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hadi A, Niaei A, Seifi A, Rasoulzadeh Y. Synthesis, Characterization, and Efficiency Testing of Ag3PO4/TiO2 Heterogeneous Nano-Photocatalyst in Removing Gaseous Formaldehyde as an Occupational Carcinogen. J Health Saf Work 2022; 12 (3) :499-513
URL: http://jhsw.tums.ac.ir/article-1-6737-en.html
1- Department of Occupational Health Engineering, Faculty of Health, Tabriz University of Sciences, Tabriz, Iran
2- Department of Chemical & Petroleum Engineering, University of Tabriz, Tabriz, Iran
3- Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran | Department of Chemistry, Gebze Technical University, Gebze, Turkey
4- Department of Occupational Health Engineering, Faculty of Health, Tabriz University of Sciences, Tabriz, Iran | Road Traffic Injury Research Center, Tabriz University of Medical Sciences, Tabriz, Iran , rasoulzadehy@tbzmed.ac.ir
Abstract:   (1040 Views)
Introduction: Rapid population growth and industrialization have increased chemical pollutants. Some studies show that employee exposure to formaldehyde in industrial places, hospitals, and laboratory settings is more than the allowed limits. Therefore, it is necessary to implement a proper control system to reduce this exposure. This study aimed to synthesize Ag3PO4/TiO2 nanocomposite, determine its morphological and structural characteristics, and test the degradation efficiency of this photocatalyst on formaldehyde.
Material and Methods: Ag3PO4/TiO2 composites were synthesized via an in-situ precipitation method. The physicochemical, morphological, and optical properties of the synthesized sample were investigated by employing the BET method, X-ray diffraction (XRD), UV–visible absorption spectroscopy, and scanning electron microscopy (SEM). The photocatalyst degradation efficiency test was performed on gaseous formaldehyde in a 3.2-liter photoreactor under visible light radiation.
Results: The UV–Vis absorption spectrum of the Ag3PO4/TiO2 sample noticeably shifted to the visible light region compared to that of the TiO2. The bandgap energy of the nanocomposite was 2.3 eV. The SEM image demonstrated that the average particle size of the nanocomposite was about 102 nm. The result of the degradation efficiency tests revealed that 63% of the formaldehyde was removed under visible light irradiation after 90 minutes by the Ag3PO4/TiO2 photocatalyst.
Conclusion: The adopted synthesis method adopted was highly efficient and appropriate for the synthesis of Ag3PO4/TiO2 nanocomposite according to the analyses. The Ag3PO4/TiO2 photocatalyst performed well under visible light radiation and could be used in pollution control systems.
Full-Text [PDF 2012 kb]   (802 Downloads)    

Type of Study: Research |
Received: 2022/09/24 | Accepted: 2022/09/1 | Published: 2022/09/1

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb